
Polymorphism

 Polymorphism is a method that a programmer can use to handle objects that, despite differing

implementations and behavior, can be accessed through a common interface.

 To implement polymorphism, a programmer would create a “base” abstract class that defines

the methods that a class should have. The abstract base class cannot be instantiated itself and only

extended. Then, classes can be created that “extend” the abstract class and provide actual

implementations to the required methods.

 For example, let’s say that a developer is creating a program that deals with several shapes. If

the developer were clever, he would create an abstract “Shape” class. One method that the abstract

Shape class could have would be a “getArea()” method, which would return the area of the shape. The

developer would then subclass the abstract “Shape” class and provide specific implementations of these

methods, including getArea(). For instance, the developer could choose to make a “Circle” and a

“Rectangle” class. Both of these classes would have a getArea() method that would be implemented

differently. The Circle.getArea method would look like Pi*r*r, while the Rectangle.getArea method

would look like length*width. Now let’s say that the developer wants to create a “Square” class. The

developer could create a subclass of the “Rectangle” class that accomplishes this. Providing that the

developer still specifies a length and width (side = length = width), they could still use the

Rectangle.getArea function.

 Now the developer has a number of classes that subclass the abstract “Shape” class. Let’s say

that our developer now needs to write a program that computes the total area of all the Shapes in a list.

The developer can now simply iterate over the list and call the getArea() function on each shape without

any regard for the shape itself.

